If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+16x+1=0
a = 15; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·15·1
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-14}{2*15}=\frac{-30}{30} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+14}{2*15}=\frac{-2}{30} =-1/15 $
| -4(u-4)=2u-8 | | k-4k=32 | | 6(-4+4m)-2(7+3m)=-74 | | -4(x+50)=-4x-20 | | -4(x+50=-4x-20 | | (X-4/5)-2=3x/5 | | 0=5x-10(1-x) | | 6(x-10)-9=30x-309 | | 2y+3^2=79 | | 3(2x-4)-2(x+1)=10 | | 2x+8=-9x-3 | | 38-27x=21+3x-43 | | -10x+12+38=70 | | 5x+8=-4x+4 | | ?=4n−2 | | 5x+-8=-4x+4 | | x-2=3x-11 | | -2(8x+8)=-112 | | y=6(5)+2 | | 2x+1+7x-10=90 | | 9-4x-47=3x-3 | | 4(x-4)=-15 | | 6x-6x-5=15 | | 4x+31=11 | | 12x-19-2x+4=1/2(12x-19) | | 10+3/x=6 | | 300x-4=92 | | 1.63x0.29=0.205x0.08206 | | 1.63x0.29=0.205x0.08206xX | | 92-4x=300 | | 2x+4+2x+4=12x-19 | | 8/3=2w |